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An exact solution is obtained of the refraction problem in a two-dimensionally in- 
homogeneous medium. Light propagation in nonisothermal gas streams is examined, 
and the influence of heat exchange on the light beam trajectory and intensity dis- 
tribution is investigated. 

In connection with the need to produce optical waveguides for optical communications sys- 
tems, the production of thermogasdynam~c waveguides is of great value [1-3]. Light propaga- 
tion in inhomogeneously heated laminar subsonic (M ~0.2) gas streams, which it is proposed 
to use to control light beam~, is considered in this paper. 

i. Light propagation in a medium is described by a system of Maxwell equations (secon- 
dary charges and currents are assumed absent). The inhomogeneity of the dielectric permit- 
tivity field (for optical frequencies N = i [4]) is determined by convection which depends 
on absorption of radiation by the medium. Light beams in which the fields E and H are much 
less than the intermolecular fields, and moreover, whose radiation energy is much less than 
the internal gas energy E 2 << 8~CvT (C v is the isochoric specific heat per unit volume in the 
system of units) are considered. For air at room temperature we should have E << 3,102 W/cm 
or the radiation power <<i GW/m 2. It is then sufficient to limit oneself to a linear rela- 
tionship between E and H in the fixed gas and electrostriction and the electrocaloric effect 
can be neglected (which would result in excessive accuracy if taken into account since the 
gas is considered incompressible). The gas incompressibility also results in the absence of 
anisotropy E because of the inhomogeneity of the gas velocity (the Maxwell dynamooptics ef- 
fect). If the frequency dispersion r of the gas at rest is negligible in the frequency band 
under consideration and there is no spatial dispersion, then the spatial dispersion E in a 
moving medium which occurs because of field entrainment by the medium can be neglected. There- 
fore, the radiation does not influence convection, but convection influences the radiation 
because of the dependence of r on the thermodynamic gas flow parameters, 

To the accuracy of quantities on the order of vc -a, the material equations in a moving 
medium have the form [4] 

D = e E - +  ~ - - 1  [VHI, (1 )  
C 

B = H + - -  [EVl. (2 )  

In gases of nonpolar molecules (in dry air, for example) [5] 

8 = l + 4 m z N .  (3)  

Since 4~uN << 1 (for air e -- i = 10-s), then to the accuracy of quantities of the order 
4~Navc -x, we obtain D = EH, B = H from (I) and (2). To the same accuracy, the light phase 
velocity in a moving medium without dispersion can be considered invariant [4]. It is suf- 
ficient to consider the two-dimensional system of Maxwell equations for light rays being 
propagated along plane inhomogenelties. In first-order perturbation theory in 4waN, the 
Cartesian E and H components satisfy the scalar wave equation 

a~/ ~/ ~(x, ~) ~ (4) 
OX--'-'-~"}- #y2 ' =  C z alz  
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To determine the ray characteristics, it is sufficient to limit oneself to (4) without tak- 
ing account of the vector nature of the fields E and H. The properties of the characteris- 
tics of (4) result in a variational problem for the Fermat functional [6]: 

S = ~nds--~extr, n = / " ~  (5) 
: J 

where (;Is = /((dx)" + (dy)" is the ray length element. The Euler equation for the functional 
(5) (the ray equation) has the form 

or  

( )[ diZy 1 On dy an I q- ~ (6) 

_ _  _ _  a l n  n d y  dq~ : alnn tg cp ~ ,  - -  = tgIq~(x, Y)l. ( 7 )  

dx Oy Ox dx 

The angle of refraction depends on n, hence it follows from the first equation in (7) that 

from which 

0r =e tg( r  an ( an ~-'  
alnn ~ - ~ g  / =tgIv(x,y)l. 

(8) 

(P ---- areeos [-~--- cos ((p, q- ye)] - -  Y (9) 

(the subscript e refers to the initial point of ray incidence). Equations (8) and (9) can 
be rewritten in the form 

where n - n(x)  

acp = _ t g ( ~ _ ; ) ,  c t g ; = t g ?  (10) 
d lnn  

r = aresin [ n--r sin (% - ~) I n  q-~" 

where ~ = a r c s i n  (hen-* s i n  ~ e )  f o r  n = n(x)  and ~ = a rccos  (nen-* cos ~ e ) for  
n = n ( y ) .  R e l a t i o n s h i p s  (9) and (10) a r e  meaningfu l  on ly  fo r  [nen-*  cos ( m e  + 

Ye)[ ~ l o r  [nen-* s i n  ( r  ~e)[ ~ l ;  t h e r e f o r e ,  n e ~  n.  Hence, a r ay  i s  p ropaga ted  t o -  
ward i n c r e a s i n g  n. Let  us no te  the  s t r o n g  dependence of  t he  a n g l e  of r e f r a c t i o n  ~ on the  
ratio of the components of the gradient of n. The dependence of ~ on n is less essential 
since 4~aN << i. In an ideal gas p = NkT and because of (3) and (5) 

rp ( n )  nEl +-~- , r= 2~zk -i 

The relative change in density due to the change in pressure is small for a subsonic stream 
and for M << 0.2 it does not exceed 2% [7]. Therefore, the inhomogenelty in the field T is 
the governing factor of the inhomogeneity in n, meaning, the curving of the ray trajectory. 
Therefore, 

b (12) n = l q -  ~ ,  
T 

where b = rp : const (for air under normal conditions b = 9.10 -a K). It is proposed to pro- 
duce a field inhomogeneity because of the change in T as well as N in gas lenses. However, 
if there are such heat and mass transfer problems, it is possible to limit oneself to a con- 
sideration of one of the factors and Just the temperature inhomogeneity of n will henceforth 
be considered. 

The amplitude dependences of the light wave field are conveniently studied by substitut- 
ing U : W(x, y) exp (imt) into (4). Then 

Aw + k~n2~/= O, (13) 
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where ko = mc-*. For large ko, Eq. (13) allows an asymptotic expansion of the form [8] 

w = exp [ikoS (x, Y)I ~ (iko) -'n Am (x, y), (14) 
m = 0  

which, when substituted into (13), results in a system of equations for the eikonal S and the 
amplitudes A m 

( v S ) 2  = nZ, 

2VAmVS -'}- AreAS = -- AAm_i, A_t = 0. (15) 

It can be shown that 

OS OS 
--ncos% - -  =nsinq); (16) 

Ox Oy 

therefore, the first equation in (15) is satisfied identically, and equations for the trans- 
fer of amplitudes are obtained from (15) and (16) 

dA., On 
2n cos ~ ~ q- scy csc (~ q- ?) T Am = - -  hAm_t. 

2. Let us examine a particular case. When 

(17) 

O~ Olnn Or Olnn (18) 

Ox Oy Oy Ox 

the first equation in (7) is satisfied identically and integration of (6) reduces to solving 
the second equation in (7). 

The relationships (18) are the Cauchy-Rie-~nn conditions for an analytic function ~(z) - 
~+ i in n, z = x + ly, therefore 

A~=0, Alnn=0 (19) 

If N(x, y) = No + 6N(x, y), No = const, [~NIN -I << i, and (3) and (5) are taken into account ; 
to the accuracy of terms of the order of ~N N -I inclusive, then the second equation in (19) 
will result in the diffusion equation 

AN = 0. (20) 

The validity of the converse assertion follows from the Taylor series expansion of r in the 
neighborhood of the point No, c = co + (dc/dN) ~N + .... If N = N(T), then the heat conduc- 
tion is the cause of diffusion and under the constraints mentioned for N 

AT = 0. (21) 

The validity of the converse assertion is proved analogously. By giving the boundary con- 
ditions for N and T we determine n, meaning also @, The lines @ - const, n = const are or- 
thogonal; hence the light ray will be propagated at a definite (constant) angle to the lines 
of constant concentration or isotherms, (here the requirement for a two-dimenslonal inhomo- 
geneity in n is absolute). 

It should be noted that conditions (18) permit the determination of the exact solution 
of (13). Let us rewrite (13) along the characteristics, then 

d~W dW 
dS----- f- n ~ + AS dS + k~n2W = o, 

which agrees with the equation of linearly damped oscillations. The second member governing 
wave scattering is missing since it is seen from (16) and (18) that AS = Oo Then 

W (S) = Mt exp (-- iko S) + Mz exp (ikoS), 

where  Mx and M2 a r e  c o n s t a n t s  o f  i n t e g r a t i o n ,  Here  t h e  WKB a p p r o x i m a t i o n  a g r e e s  w i t h  t h e  
exact solution of the problem. 

The problem considered corresponds to hydrostatic equilibrium, which is determined by 
the gas properties, the shape of the domain, and the boundary conditions [9J. For air be- 
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tween horizontal plates, between which the spacing is ~, the temperature of the lower plate 
T, and the upper Ts, and the equilibrium condition is Ra ~ 1.7,10 s [10]. For Z = 0.01 m, the 
temperature T, should not exceed 312eK. 

The substantially lower gradients of n in a fixed Inhomogeneously heated gas as compared 
with those possible in convective gas lenses make control of the ray trajectories relatively 
less efficient. 

3. Let us exam4ne light propagation in convective gas flows (Pr = i). For the forced 
flow of a homogeneous stream with velocity u and temperature T near an isothermal plate 
heated to the temperature T w > T [7] 

T =  T,~--(Tw-- T| f -~- (22)  

It follows from (9) t h a t  

dy _~ cp ~_ - -  ~+ 1 /2  (n - -  n~) n -l. (23) 
dx 

for a light ray being propagated near a plate wlth.ye = 0, 0 ~e<< ~/2. Estimating the 
second term in the right-hand side of (23) as ~2(n --nw) and ta~ing account of (8) and (12), 
we obtain the trajectory equation (y << x) 

y ~" 2V"2b(T w --  T** )(Tw--T**) -t  (x --  l :xex). (2 4) 

If the concept of a finite thickness boundary layer 6(x) oo ~x [7] is used, then curvature 
of the trajectory is approximately similar to "inversion" of 6(x). The angle of trajectory 
deviation in air is a quantity on the order of 0.2 ~ in the laminar flow section to which 
Re x .< 106 corresponds for T w --T = 50=K, T = 300~ and u = i0 m/sec. The insignificant 
deviation of the ray trajectory f~om a strai~t llne in sue~ flows indicates the legitimacy 
of the often used approximation of paraxial optics (small angle approximation) [i, 2 ]. The 
light beam amplitude for m = 0 as follows from (17) [7] will have the form 

A0 --~ A0,exp {-- b Nu~ (Tw -- T| Tj2}, (25) 

Nu x = 0.332 l/ '~-~, (26) 

from which the influence of the heat transfer on the ray intensity is seen (compression of 
the ray tube). 

The smallness of the ray deviation angles and therefore the smallness of the optical 
strengths of the gas lenses examined in [i, 2] do not permit the solution of the problem of 
turning a ray through an angle greater than tenths of a degree. Meanwhile, it is seen from 
(9) or (i0) that greater changes in ~ can be assured because of the abrupt change in y or ~, 
as is possible, e.g., in jet flows or wakes. 

In the aerodynamic wave far behind the longitudinally streamlined heated isothermal 
plate of length L(x > 3L) [ii] 

U~ yZ ) 
(u | -- u) o,', x -  o.s exp 4vx " (27) 

It can analogously be found that 

c ( 
T - - T |  l/--- x e x p  - - - -  

u~Y2 ) 
4vx " (28)  

The enthalpy flux in the wake in the x direction is determined by the plate heat transfer 

L -L~ 

2 .[ q d x =  f~,u| S ( T - -  r**)dy, 
0 - - o o  

where q = 0.332X(T --T ) /u (ux)-* [7]; therefore, C = 0.664 (T w-T| -m. In the parax- 
W 

ial optics approxi~atlon, the trajectory equation has the form 
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Fig. i. Light ray trajectories in a heated aero- 
dynamic wake or jet (x is the Jet axis): i) 
light ray passing through the Jet; 2) light ray 
being propagated along the jet; 3) light ray re- 
flected from the jet; e) initial point of ray in- 
cidence. 

a~y On b 

dx 2 Oy T | 

L e t  us  e s t i m a t e  t h e  a n g l e s  o f  t r a j e c t o r y  d e v i a t i o n .  
~(x) (6 -- 2 v/~*) ness 

OT 

Oy 

Within the limits of a wake of thick- 

----- - -  0.664 (T w - -  T| L u .  6 
Oy ~x 2vx 

dy ~__ 0.664 b ]/ReL (T w - -  T| In x__,  (% = 0). 
dx T. x~ 

In the wake behind a plate with L = 0.15 m, x e = 0.45 m, x = 1.2 m, ~ = i ~ This indicates 
that cold jets are comparatively more efficient focusing systems than the gas lenses ordin- 
arily used, for which the refraction angles are on the order of 0.2 ~ 

From (9), (12), and (28) we can obtain 

The ray behavior for different ~ is shown in the figure. If ~ > 0, (Oe + Ye) > 90", then e e 
the ray passes through the Jet (curve I). It is reflected from the Jet (curve 3) for (@^ + 

) = 90 ~ and behaves as described by curve 2 for (~e + 7e) = 90e, whose position is unstable. 
A~I the rays passing through the heated or cooled jet result in a mirage (Fig.l). 

Actually, the jet source always is finite in width and the jets will usually be turbu- 
lent, which will result in equalization of T and ~, as well as wavering of the light beam. 

The results obtained can be carried over to the case of other two-dimenslonal and axl- 
symmetric flows under the condition that the ray trajectory lles in the same plane as the 
axis of stream sy~netry. 

NOTATION 

x, y, longitudinal and transverse coordinates; y(x), ray trajectory; E, H, D, B, elec- 
tric and magnetic field intensities and inductions; V, stream velocity; u, velocity projec- 
tion on the x axis; N, molecule concentration; T, temperature; p, pressure; ~, ~, dlelectric 
and magnetic permlttlvities of the gas; s, molecule polarizability; c, speed of light in a 
vacuum, ko, wave vector; m, frequency; k, Boltzmann constant; p, density; 9, kinematic vis- 
cosity; M, Pr, Ra, Mach, Prandtl, and Rayleigh numbers; Rex, NUx, local values of the Rey- 
nolds and Nusselt numbers. 
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INFLUENCE OF ABSORPTION COEFFICIENT FLUCTUATIONS ON THE HEATING 

OF A WEAKLY ABSORBING MEDIUM BY INTENSE OPTICAL RADIATION 

Yu. I. Lysikov, Fam Van Man', and 
Chan Tuan An' 

UDC 535.343 

The problem of heating the opacity fluctuations in a transparent solid medium by 
powerful optical radiation is numerically solved. The dependence of the absorp- 
tion coefficient of the medium on the thermoelastic stresses is taken into ac- 
count. 

The need to solve heat conduction and thermoelasticity problems occurs every time in 
considering the question of destruction of transparent solid media by intense optical radia- 
tion. The role of the medium heating processes and the growth of thermoelastic stresses 
therein are appraised differently by different authors. In clarifying the reasons for the 
destruction of the optical glass used in lasers, the authors of [i] expressed the hypothesis 
that heating of the opaque microparticles in the glass and the subsequent growth of the ther- 
moelastic stresses in the medium caused cracks which resulted in a loss of transparency. The 
idea of transparency inhomogeneities is used somewhat differently in [2-4], in which the im- 
portance of taking account of the temperature dependence of the absorption coefficient of 
the material is assumed. Destruction is caused by the temperature rise in the medium around 
foreign inclusions heated by the light and by the formation of an absorbing aureole around 
the impurity particle whose size and temperature grow avalanchelike for a sufficient radia- 
tion flux intensity because of nonlinearity of the problem. The role of the thermoelastic 
stresses, which can, in principle, also result in an increase in absorption by the medium be- 
cause of narrowing of the forbidden band as the pressure grows, was not taken into account 
in [2-4]. Still another modification of taking account of the temperature dependences of the 
absorption coefficient of the medium is presented in [5], in which a medium with a relatively 
narrow forbidden band and a strong temperature dependence of the appropriate coefficients is 
examined. The medium here does not contain optical inhomogeneities. The distinction in the 
approaches listed above indicates the lack of complete clarity in the comprehension of the 
thermal processes causing the destruction of transparent solid materials by optical radiation 
and the need for further searches in this area. 
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